Perform requests iteratively, generating new requests from previous responses
Source:R/iterate.R
req_perform_iterative.Rd
req_perform_iterative()
iteratively generates and performs requests,
using a callback function, next_req
, to define the next request based on
the current request and response. You will probably want to pair it with an
iteration helper and use a
multi-response handler to process the result.
Usage
req_perform_iterative(
req,
next_req,
path = NULL,
max_reqs = 20,
on_error = c("stop", "return"),
progress = TRUE
)
Arguments
- req
The first request to perform.
- next_req
A function that takes the previous response (
resp
) and request (req
) and returns a request for the next page orNULL
if the iteration should terminate. See below for more details.- path
Optionally, path to save the body of request. This should be a glue string that uses
{i}
to distinguish different requests. Useful for large responses because it avoids storing the response in memory.- max_reqs
The maximum number of requests to perform. Use
Inf
to perform all requests untilnext_req()
returnsNULL
.- on_error
What should happen if a request fails?
"stop"
, the default: stop iterating with an error."return"
: stop iterating, returning all the successful responses so far, as well as an error object for the failed request.
- progress
Display a progress bar for the status of all requests? Use
TRUE
to turn on a basic progress bar, use a string to give it a name, or see progress_bars to customize it in other ways. Not compatible withreq_progress()
, as httr2 can only display a single progress bar at a time.
Value
A list, at most length max_reqs
, containing responses and possibly one
error object, if on_error
is "return"
and one of the requests errors.
If present, the error object will always be the last element in the list.
Only httr2 errors are captured; see req_error()
for more details.
next_req()
The key piece that makes req_perform_iterative()
work is the next_req()
argument. For most common cases, you can use one of the canned helpers,
like iterate_with_offset()
. If, however, the API you're wrapping uses a
different pagination system, you'll need to write your own. This section
gives some advice.
Generally, your function needs to inspect the response, extract some data from it, then use that to modify the previous request. For example, imagine that the response returns a cursor, which needs to be added to the body of the request. The simplest version of this function might look like this:
next_req <- function(resp, req) {
cursor <- resp_body_json(resp)$next_cursor
req |> req_body_json_modify(cursor = cursor)
}
There's one problem here: if there are no more pages to return, then
cursor
will be NULL
, but req_body_json_modify()
will still generate
a meaningful request. So we need to handle this specifically by
returning NULL
:
next_req <- function(resp, req) {
cursor <- resp_body_json(resp)$next_cursor
if (is.null(cursor))
return(NULL)
req |> req_body_json_modify(cursor = cursor)
}
A value of NULL
lets req_perform_iterative()
know there are no more
pages remaining.
There's one last feature you might want to add to your iterator: if you
know the total number of pages, then it's nice to let
req_perform_iterative()
know so it can adjust the progress bar.
(This will only ever decrease the number of pages, not increase it.)
You can signal the total number of pages by calling signal_total_pages()
,
like this:
next_req <- function(resp, req) {
body <- resp_body_json(resp)
cursor <- body$next_cursor
if (is.null(cursor))
return(NULL)
signal_total_pages(body$pages)
req |> req_body_json_modify(cursor = cursor)
}
Examples
req <- request(example_url()) |>
req_url_path("/iris") |>
req_throttle(10) |>
req_url_query(limit = 5)
resps <- req_perform_iterative(req, iterate_with_offset("page_index"))
#> Iterating ■■■■■■■■■■■■■■■■ 50% | ETA: 1s
#> Iterating ■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■ 100% | ETA: 0s
data <- resps |> resps_data(function(resp) {
data <- resp_body_json(resp)$data
data.frame(
Sepal.Length = sapply(data, `[[`, "Sepal.Length"),
Sepal.Width = sapply(data, `[[`, "Sepal.Width"),
Petal.Length = sapply(data, `[[`, "Petal.Length"),
Petal.Width = sapply(data, `[[`, "Petal.Width"),
Species = sapply(data, `[[`, "Species")
)
})
str(data)
#> 'data.frame': 100 obs. of 5 variables:
#> $ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...
#> $ Sepal.Width : num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...
#> $ Petal.Length: num 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...
#> $ Petal.Width : num 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...
#> $ Species : chr "setosa" "setosa" "setosa" "setosa" ...