Skip to content

req_perform_iterative() iteratively generates and performs requests, using a callback function, next_req, to define the next request based on the current request and response. You will probably want to pair it with an iteration helper and use a multi-response handler to process the result.

Usage

req_perform_iterative(
  req,
  next_req,
  path = NULL,
  max_reqs = 20,
  on_error = c("stop", "return"),
  progress = TRUE
)

Arguments

req

The first request to perform.

next_req

A function that takes the previous response (resp) and request (req) and returns a request for the next page or NULL if the iteration should terminate. See below for more details.

path

Optionally, path to save the body of request. This should be a glue string that uses {i} to distinguish different requests. Useful for large responses because it avoids storing the response in memory.

max_reqs

The maximum number of requests to perform. Use Inf to perform all requests until next_req() returns NULL.

on_error

What should happen if a request fails?

  • "stop", the default: stop iterating with an error.

  • "return": stop iterating, returning all the successful responses so far, as well as an error object for the failed request.

progress

Display a progress bar for the status of all requests? Use TRUE to turn on a basic progress bar, use a string to give it a name, or see progress_bars to customize it in other ways. Not compatible with req_progress(), as httr2 can only display a single progress bar at a time.

Value

A list, at most length max_reqs, containing responses and possibly one error object, if on_error is "return" and one of the requests errors. If present, the error object will always be the last element in the list.

Only httr2 errors are captured; see req_error() for more details.

next_req()

The key piece that makes req_perform_iterative() work is the next_req() argument. For most common cases, you can use one of the canned helpers, like iterate_with_offset(). If, however, the API you're wrapping uses a different pagination system, you'll need to write your own. This section gives some advice.

Generally, your function needs to inspect the response, extract some data from it, then use that to modify the previous request. For example, imagine that the response returns a cursor, which needs to be added to the body of the request. The simplest version of this function might look like this:

next_req <- function(resp, req) {
  cursor <- resp_body_json(resp)$next_cursor
  req |> req_body_json_modify(cursor = cursor)
}

There's one problem here: if there are no more pages to return, then cursor will be NULL, but req_body_json_modify() will still generate a meaningful request. So we need to handle this specifically by returning NULL:

next_req <- function(resp, req) {
  cursor <- resp_body_json(resp)$next_cursor
  if (is.null(cursor))
    return(NULL)
  req |> req_body_json_modify(cursor = cursor)
}

A value of NULL lets req_perform_iterative() know there are no more pages remaining.

There's one last feature you might want to add to your iterator: if you know the total number of pages, then it's nice to let req_perform_iterative() know so it can adjust the progress bar. (This will only ever decrease the number of pages, not increase it.) You can signal the total number of pages by calling signal_total_pages(), like this:

next_req <- function(resp, req) {
  body <- resp_body_json(resp)
  cursor <- body$next_cursor
  if (is.null(cursor))
    return(NULL)

  signal_total_pages(body$pages)
  req |> req_body_json_modify(cursor = cursor)
}

Examples

req <- request(example_url()) |>
  req_url_path("/iris") |>
  req_throttle(10) |>
  req_url_query(limit = 5)

resps <- req_perform_iterative(req, iterate_with_offset("page_index"))
#> Iterating ■■■■■■■■■■■■■■■■                  50% | ETA:  1s
#> Iterating ■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■  100% | ETA:  0s

data <- resps |> resps_data(function(resp) {
  data <- resp_body_json(resp)$data
  data.frame(
    Sepal.Length = sapply(data, `[[`, "Sepal.Length"),
    Sepal.Width = sapply(data, `[[`, "Sepal.Width"),
    Petal.Length = sapply(data, `[[`, "Petal.Length"),
    Petal.Width = sapply(data, `[[`, "Petal.Width"),
    Species = sapply(data, `[[`, "Species")
  )
})
str(data)
#> 'data.frame':	100 obs. of  5 variables:
#>  $ Sepal.Length: num  5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...
#>  $ Sepal.Width : num  3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...
#>  $ Petal.Length: num  1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...
#>  $ Petal.Width : num  0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...
#>  $ Species     : chr  "setosa" "setosa" "setosa" "setosa" ...